Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
Sci Total Environ ; 922: 171262, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38417525

ABSTRACT

Salt marshes are highly productive and valuable coastal ecosystems that act as filters for nutrients and pollutants at the land-sea interface. The salt marshes of the mid-Atlantic United States often exhibit geochemical behavior that varies significantly from other estuaries around the world, but our understanding of metal mobility and bioavailability remains incomplete for these systems. We sampled abiotic (water and sediment) and native biotic (three halophyte and two bivalve species) compartments of a southeastern United States salt marsh to understand the site- and species-specific metal concentrations, fractionation, and bioavailability for 16 metals and metalloids, including two naturally occurring radionuclides. Location on the marsh platform greatly influenced metal concentrations in sediment and metal bioaccumulation in halophytes, with sites above the mean high-water mark (i.e., high marsh zone) having lower concentrations in sediment but plants exhibiting greater biota sediment accumulation factors (BSAFs). Transition metal concentrations in the sediment were an average of 6× higher in the low marsh zone compared to the high marsh zone and heavy metals were on average 2× higher. Tissue- and species-specific preferential accumulation in bivalves provide opportunities for tailored biomonitoring programs. For example, mussel byssal threads accumulated ten of the sixteen studied elements to significantly greater concentrations compared to soft tissues and oysters had remarkably high soft tissue zinc concentrations (~5000 mg/kg) compared to all other species and element combinations studied. Additionally, some of our results have important implications for understanding metal mobility and implementing effective remediation (specifically phytoremediation) strategies, including observations that (1) heavy metals exhibit distinct concentration spatial distributions and metal fractionation patterns which vary from the transition metals and (2) sediment organic matter fraction appears to play an important role in controlling sediment metal concentrations, fractionation, and plant bioavailability.


Subject(s)
Bivalvia , Metals, Heavy , Animals , Wetlands , Ecosystem , Biological Availability , Geologic Sediments , Metals, Heavy/analysis , Southeastern United States , Salt-Tolerant Plants , Water , Environmental Monitoring
2.
Sci Rep ; 14(1): 2110, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267528

ABSTRACT

Backscatter interferometry (BSI) is a refractive index (RI) detection method that is easily integrated with capillary electrophoresis (CE) and is capable of detecting species ranging from inorganic ions to proteins without additional labels or contrast agents. The BSI signal changes linearly with the square of the separation voltage which has been used to quantify sample injection, but has not been explored as a potential signal enhancement mechanism in CE. Here we develop a mathematical model that predicts a signal enhancement at high field strengths, where the BSI signal is dominated by the voltage dependent mechanism. This is confirmed in both simulation and experiment, which show that the analyte peak area grows linearly with separation voltage at high field strengths. This effect can be exploited by adjusting the background electrolyte (BGE) to increase the conductivity difference between the BGE and analyte zones, which is shown to improve BSI performance. We also show that this approach has utility in small bore capillaries where larger separation fields can be applied before excess Joule heating degrades the separation. Unlike other optical detection methods that generally degrade as the optical pathlength is reduced, the BSI signal-to-noise can improve in small bore capillaries as the larger separation fields enhance the signal.

3.
Open Forum Infect Dis ; 11(1): ofad621, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38173845

ABSTRACT

Background: Diagnostic specimens for spinal tuberculosis (STB) are mostly collected via open surgery. Percutaneous computed tomography (CT)-guided biopsies are used in times of limited surgical availability. However, poor diagnostic accuracy of Mycobacterium tuberculosis (Mtb) culture has been reported with this method, due to limited sample volume and the paucibacillary nature of STB. We evaluated Xpert MTB/RIF Ultra on open and CT-guided biopsies as compared with the gold standard Mtb culture and histopathology. Methods: We conducted a prospective diagnostic accuracy study of Xpert Ultra, as compared with tuberculosis culture and histopathology, in adults with signs and symptoms of STB at a tertiary academic hospital in South Africa from November 2020 to December 2021. Diagnostic testing was performed on 31 patients with available samples. Results: Xpert Ultra had a sensitivity of 94.7% (95% CI, 75.3%-99.7%) and specificity of 100% (95% CI, 75.7%-100.0%) against a reference standard of Mtb culture and histopathology. Xpert Ultra had high diagnostic accuracy in open and CT-guided biopsy samples with sensitivity and specificity of 100% and 100% (open) and 89% and 100% (CT), respectively. Mtb culture had limited specificity for CT-guided biopsies (43%; 95% CI, 15.8%-74.9%). HIV-1 coinfection did not affect Mtb abundance measures by Xpert Ultra or culture. Xpert Ultra was also superior to culture for STB diagnosis in patients concurrently treated for pulmonary tuberculosis. Conclusions: Xpert Ultra detected more STB cases than culture for CT-guided biopsy samples. There was also no difference in sensitivity for open biopsies, irrespective of HIV-1 status, making it an important tool for rapid diagnosis, especially during times or in locations where open surgery is not possible or concurrent pulmonary tuberculosis treatment is initiated.

4.
J Evol Biol ; 36(12): 1695-1711, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37885134

ABSTRACT

Animal ecology and evolution have long been known to shape host physiology, but more recently, the gut microbiome has been identified as a mediator between animal ecology and evolution and health. The gut microbiome has been shown to differ between wild and domestic animals, but the role of these differences for domestic animal evolution remains unknown. Gut microbiome responses to new animal genotypes and local environmental change during domestication may promote specific host phenotypes that are adaptive (or not) to the domestic environment. Because the gut microbiome supports host immune function, understanding the effects of animal ecology and evolution on the gut microbiome and immune phenotypes is critical. We investigated how domestication affects the gut microbiome and host immune state in multiple pig populations across five domestication contexts representing domestication status and current living conditions: free-ranging wild, captive wild, free-ranging domestic, captive domestic in research or industrial settings. We observed that domestication context explained much of the variation in gut microbiome composition, pathogen abundances and immune markers, yet the main differences in the repertoire of metabolic genes found in the gut microbiome were between the wild and domestic genetic lineages. We also documented population-level effects within domestication contexts, demonstrating that fine scale environmental variation also shaped host and microbe features. Our findings highlight that understanding which gut microbiome and immune traits respond to host genetic lineage and/or scales of local ecology could inform targeted interventions that manipulate the gut microbiome to achieve beneficial health outcomes.


Subject(s)
Gastrointestinal Microbiome , Animals , Swine , Gastrointestinal Microbiome/genetics , Domestication , Ecology , Phenotype , Genotype
5.
Nat Commun ; 14(1): 6252, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803007

ABSTRACT

Mosquitoes have profoundly affected human history and continue to threaten human health through the transmission of a diverse array of pathogens. The phylogeny of mosquitoes has remained poorly characterized due to difficulty in taxonomic sampling and limited availability of genomic data beyond the most important vector species. Here, we used phylogenomic analysis of 709 single copy ortholog groups from 256 mosquito species to produce a strongly supported phylogeny that resolves the position of the major disease vector species and the major mosquito lineages. Our analyses support an origin of mosquitoes in the early Triassic (217 MYA [highest posterior density region: 188-250 MYA]), considerably older than previous estimates. Moreover, we utilize an extensive database of host associations for mosquitoes to show that mosquitoes have shifted to feeding upon the blood of mammals numerous times, and that mosquito diversification and host-use patterns within major lineages appear to coincide in earth history both with major continental drift events and with the diversification of vertebrate classes.


Subject(s)
Culicidae , Animals , Humans , Culicidae/genetics , Phylogeny , Mosquito Vectors/genetics , Mammals , Vertebrates , Feeding Behavior
6.
PeerJ ; 11: e16163, 2023.
Article in English | MEDLINE | ID: mdl-37810791

ABSTRACT

The microbial fermentation behind sourdough bread is among our oldest technologies, yet there are many opportunities for sourdough science to learn from traditional bakers. We analyzed 16S rRNA sequences in R to assess the bacterial community structure and performance of 40 starters grown from 10 types of flour over 14 days, and identified six distinct stages of succession. At each stage, bacterial taxa correlate with determinants of bread quality including pH, rise, and aromatic profile. Day 1 starter cultures were dominated by microorganisms commonly associated with plants and flour, and by aromas similar to toasted grain/cereal. Bacterial diversity peaked from days 2-6 as taxa shifted from opportunistic/generalist bacteria associated with flour inputs, toward specialized climax bacterial communities (days 10-14) characterized by acid-tolerant taxa and fruity (p < 3.03e-03), sour (p < 1.60e-01), and fermented (p < 1.47e-05) aromas. This collection of traits changes predictably through time, regardless of flour type, highlighting patterns of bacterial constraints and dynamics that are conserved across systems and scales. Yet, while sourdough climax communities exhibit similar markers of maturity (i.e., pH ≤ 4 and enriched in Lactobacillus (mean abundance 48.1%), Pediococcus (mean abundance 22.7%), and/or Gluconobacter (mean abundance 19.1%)), we also detected specific taxa and aromas associated with each type of flour. Our results address important ecological questions about the relationship between community structure and starter performance, and may enable bakers to deliberately select for specific sourdough starter and bread characteristics.


Subject(s)
Bacteria , Flour , Flour/microbiology , RNA, Ribosomal, 16S/genetics , Fermentation , Bacteria/genetics , Lactobacillus/genetics
7.
J Investig Med High Impact Case Rep ; 11: 23247096231205347, 2023.
Article in English | MEDLINE | ID: mdl-37811883

ABSTRACT

Histoplasma capsulatum is a dimorphic fungus found in certain parts of North, Central, and South America. Transmission is primarily through airborne inoculation from inhaled fungal microconidia. Histoplasmosis is typically a self-limited mycosis; however, in patients with immunodeficiency, disseminated disease can occur and may lead to high disease burden. This report studies a case of disseminated histoplasmosis in a patient newly diagnosed with human immunodeficiency virus. His presentation on admission was consistent with infectious pulmonary granulomatous disease, and further imaging and laboratory results showed evidence of multi-organ involvement. It is likely his presentation in Central California was a reactivation infection after inoculation in Central America many years ago.


Subject(s)
Histoplasmosis , Humans , Histoplasmosis/diagnosis , Histoplasmosis/drug therapy , Histoplasmosis/microbiology , Histoplasma , Immunocompromised Host , California
8.
Crit Rev Biotechnol ; : 1-19, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37731336

ABSTRACT

Shotgun metagenomics is an increasingly cost-effective approach for profiling environmental and host-associated microbial communities. However, due to the complexity of both microbiomes and the molecular techniques required to analyze them, the reliability and representativeness of the results are contingent upon the field, laboratory, and bioinformatic procedures employed. Here, we consider 15 field and laboratory issues that critically impact downstream bioinformatic and statistical data processing, as well as result interpretation, in bacterial shotgun metagenomic studies. The issues we consider encompass intrinsic properties of samples, study design, and laboratory-processing strategies. We identify the links of field and laboratory steps with downstream analytical procedures, explain the means for detecting potential pitfalls, and propose mitigation measures to overcome or minimize their impact in metagenomic studies. We anticipate that our guidelines will assist data scientists in appropriately processing and interpreting their data, while aiding field and laboratory researchers to implement strategies for improving the quality of the generated results.

9.
PeerJ ; 11: e15148, 2023.
Article in English | MEDLINE | ID: mdl-37123005

ABSTRACT

Gastrointestinal (GI) morphology plays an important role in nutrition, health, and epidemiology; yet limited data on GI variation have been collected since 1885. Here we demonstrate that students can collect reliable data sets on gut morphology; when they do, they reveal greater morphological variation for some structures in the GI tract than has been documented in the published literature. We discuss trait variability both within and among species, and the implications of that variability for evolution and epidemiology. Our results show that morphological variation in the GI tract is associated with each organ's role in food processing. For example, the length of many structures was found to vary significantly with feeding strategy. Within species, the variability illustrated by the coefficients of variation suggests that selective constraints may vary with function. Within humans, we detected significant Pearson correlations between the volume of the liver and the length of the appendix (t-value = 2.5278, df = 28, p = 0.0174, corr = 0.4311) and colon (t-value = 2.0991, df = 19, p = 0.0494, corr = 0.4339), as well as between the lengths of the small intestine and colon (t-value = 2.1699, df = 17, p = 0.0445, corr = 0.4657), which are arguably the most vital organs in the gut for nutrient absorption. Notably, intraspecific variation in the small intestine can be associated with life history traits. In humans, females demonstrated consistently and significantly longer small intestines than males (t-value15 = 2.245, p = 0.0403). This finding supports the female canalization hypothesis, specifically, increased female investment in the digestion and absorption of lipids.


Subject(s)
Gastrointestinal Tract , Intestine, Small , Male , Humans , Female , Colon
11.
J Forensic Sci ; 68(3): 768-779, 2023 May.
Article in English | MEDLINE | ID: mdl-37009755

ABSTRACT

Forensically relevant single nucleotide polymorphisms (SNPs) can provide valuable supplemental information to short tandem repeats (STRs) for investigative leads, and genotyping can now be streamlined using massively parallel sequencing (MPS). Dust is an attractive evidence source, as it accumulates on undisturbed surfaces, often is overlooked by perpetrators, and contains sufficient human DNA for analysis. To assess whether SNPs genotyped from indoor dust using MPS could be used to detect known household occupants, 13 households were recruited and provided buccal samples from each occupant and dust from five predefined indoor locations. Thermo Fisher Scientific Precision ID Identity and Ancestry Panels were utilized for SNP genotyping, and sequencing was completed using Illumina® chemistry. FastID, a software developed to permit mixture analysis and identity searching, was used to assess whether known occupants could be detected from associated household dust samples. A modified "subtraction" method was also used in FastID to estimate the percentage of alleles in each dust sample contributed by known and unknown occupants. On average, 72% of autosomal SNPs were recovered from dust samples. When using FastID, (a) 93% of known occupants were detected in at least one indoor dust sample and could not be excluded as contributors to the mixture, and (b) non-contributor alleles were detected in 54% of dust samples (29 ± 11 alleles per dust sample). Overall, this study highlights the potential of analyzing human DNA present in indoor dust to detect known household occupants, which could be valuable for investigative leads.


Subject(s)
DNA Fingerprinting , Polymorphism, Single Nucleotide , Humans , DNA Fingerprinting/methods , Genotype , DNA/analysis , Software , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA , Microsatellite Repeats
12.
PeerJ ; 11: e15224, 2023.
Article in English | MEDLINE | ID: mdl-37065690

ABSTRACT

Morphological traits have often been used to predict diet and trophic position of species across many animal groups. Variation in gut size of closely related animals is known to be a good predictor of dietary habits. Species that are more herbivorous or that persist on low-quality diets often have larger stomachs than their carnivorous counterparts. This same pattern exists in crabs and in most species, individuals exhibit external markings on the dorsal side of their carapace that appear to align with the position and size of their gut. We hypothesized that these external markings could be used as an accurate estimate of the crab's cardiac stomach size, allowing an approximation of crab dietary strategies without the need to sacrifice and dissect individual animals. We used literature values for mean diet and standardized external gut size markings taken from crab photographs across 50 species to show that percent herbivory in the diet increases non-linearly across species of brachyuran crab with the external estimate of gut size. We also used data from dissections in four species to show that external gut markings were positively correlated with gut sizes, though the strength of this correlation differed across species. We conclude that when rough approximations of diet quality such as percent herbivory will suffice, measuring external carapace markings in crabs presents a quick, free, non-lethal alternative to dissections. Our results also provide important insights into tradeoffs that occur in crab morphology and have implications for crab evolution.


Subject(s)
Brachyura , Animals , Brachyura/anatomy & histology , Diet , Stomach/anatomy & histology , Feeding Behavior , Herbivory
13.
Funct Ecol ; 37(1): 13-25, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37056633

ABSTRACT

Current global challenges call for a rigorously predictive ecology. Our understanding of ecological strategies, imputed through suites of measurable functional traits, comes from decades of work that largely focussed on plants. However, a key question is whether plant ecological strategies resemble those of other organisms.Among animals, ants have long been recognised to possess similarities with plants: as (largely) central place foragers. For example, individual ant workers play similar foraging roles to plant leaves and roots and are similarly expendable. Frameworks that aim to understand plant ecological strategies through key functional traits, such as the 'leaf economics spectrum', offer the potential for significant parallels with ant ecological strategies.Here, we explore these parallels across several proposed ecological strategy dimensions, including an 'economic spectrum', propagule size-number trade-offs, apparency-defence trade-offs, resource acquisition trade-offs and stress-tolerance trade-offs. We also highlight where ecological strategies may differ between plants and ants. Furthermore, we consider how these strategies play out among the different modules of eusocial organisms, where selective forces act on the worker and reproductive castes, as well as the colony.Finally, we suggest future directions for ecological strategy research, including highlighting the availability of data and traits that may be more difficult to measure, but should receive more attention in future to better understand the ecological strategies of ants. The unique biology of eusocial organisms provides an unrivalled opportunity to bridge the gap in our understanding of ecological strategies in plants and animals and we hope that this perspective will ignite further interest. Read the free Plain Language Summary for this article on the Journal blog.

14.
Environ Sci Technol ; 57(8): 3187-3197, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36799656

ABSTRACT

Radiological contamination of coastal habitats poses potential risk for native fauna, but the bioavailability of aqueous radium (Ra) and other dissolved metals to marine bivalves remains unclear. This study was the first to examine the tissue-specific disposition of aqueous 226Ra in a coastal mussel, specifically the Atlantic ribbed mussel Geukensia demissa. Most organ groups reached steady-state concentrations within 7 days during experimental exposure, with an average uptake rate constant of 0.0013 mL g-1 d-1. When moved to Ra-free synthetic seawater, mussels rapidly eliminated aqueous 226Ra (average elimination rate constant 1.56 d-1). The biological half-life for aqueous 226Ra ranged from 8.9 h for the gills and labial palps to 15.4 h for the muscle. Although previous field studies have demonstrated notable 226Ra accumulation in the soft tissues of marine mussels and that, for freshwater mussels, tissue-incorporated 226Ra derives primarily from the aqueous phase, our tissue-specific bioconcentration factors (BCFs) were on the order of (8.3 ± 1.5) × 10-4 indicating low accumulation potential of aqueous 226Ra in estuarine mussels. This suggests marine and estuarine mussels obtain 226Ra from an alternate route, such as particulate-sorbed Ra ingested during filter-feeding or from a contaminated food source.


Subject(s)
Bivalvia , Radium , Animals , Toxicokinetics , Water
15.
Electrophoresis ; 44(5-6): 549-557, 2023 03.
Article in English | MEDLINE | ID: mdl-36641782

ABSTRACT

The appearance of unexpected peaks in capillary electrophoresis (CE) is common and can lengthen the time of method development as assay conditions and experimental parameters are varied to understand and mitigate the effects of the additional peaks. Additional peaks can arise when a single-analyte zone is split into multiple zones. Understanding the underlying mechanism of these phenomena, recognizing conditions that favor its presence, and knowing how to confirm and eliminate the effect are important for efficient method optimization. In this study, we examine how the overlap of analyte zones with the sample plug can lead to peak splitting. This is explored experimentally using dual detection CE, which enables both the sample plug and analyte zones to be independently and simultaneously measured from the same detection volume. Simulations performed via COMSOL Multiphysics confirm the origin of the splitting and help guide experiments to reduce and eliminate the effect. Our findings show that this peak splitting mechanism can arise in separations of both small and large molecules but is, especially, prevalent in separations of slowly migrating macromolecules. This effect is also more prevalent when using a short length-to-detector, as is commonly found in microfluidic applications. A simple diffusion-less model is introduced to develop strategies for reducing peak splitting that avoids modifying the apparatus, such as by lengthening the separation length, which can be difficult. Decreasing the sample plug length and slowing the electroosmotic flow can both reduce this effect, which is confirmed experimentally.


Subject(s)
Electrophoresis, Capillary , Interferometry , Electrophoresis, Capillary/methods
16.
PLoS One ; 17(11): e0278215, 2022.
Article in English | MEDLINE | ID: mdl-36441803

ABSTRACT

Salt marshes are ecologically and economically important features of coastal environments that are vulnerable to sea level rise, the rate of which has accelerated in recent decades along the southeastern US Atlantic coast. Increased flooding frequency and duration across the marsh platform is predicted to impact vegetation community structure and overall marsh persistence, but the effect of changing inundation patterns on biogeochemical processes in marsh sediments remains largely unexplored. As part of a long-term monitoring effort to assess how marshes are responding to sea level rise in North Inlet estuary (South Carolina, USA), we collected data on porewater nutrient concentrations from a series of permanent monitoring plots across multiple transects spanning the marsh elevation gradient during the growing season from 2009 to 2019. Additionally, we calculated time inundated for each plot using local water level data and high-resolution elevation measurements to assess the change in time flooded at each plot. Our results indicate that both NH4 and PO4 nutrient concentrations have increased in most permanent plots over the 11-year study period and that nutrient concentrations are higher with increasing proximity to the creek. Spatial patterns in nutrient increases through time are coincident with considerable increases in tidal inundation observed over the marsh platform. Across plots located in the low marsh, porewater NH4 and PO4 concentrations have risen at average rates of 8.96 µM/year and 0.86 µM/year, respectively, and have reached rates as high as 27.25 µM/year and 3.13 µM/year. We suggest that increased inundation time due to rising sea level has altered biogeochemical conditions influencing nutrient availability in marsh porewater, resulting in increases that likely have relevance for larger scale nutrient cycles as well as marsh ecosystem stability and function.


Subject(s)
Ecosystem , Wetlands , Sea Level Rise , Nutrients , Southeastern United States
17.
Sci Adv ; 8(31): eabp9908, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35921404

ABSTRACT

Invertebrates constitute the majority of animal species and are critical for ecosystem functioning and services. Nonetheless, global invertebrate biodiversity patterns and their congruences with vertebrates remain largely unknown. We resolve the first high-resolution (~20-km) global diversity map for a major invertebrate clade, ants, using biodiversity informatics, range modeling, and machine learning to synthesize existing knowledge and predict the distribution of undiscovered diversity. We find that ants and different vertebrate groups have distinct features in their patterns of richness and rarity, underscoring the need to consider a diversity of taxa in conservation. However, despite their phylogenetic and physiological divergence, ant distributions are not highly anomalous relative to variation among vertebrate clades. Furthermore, our models predict that rarity centers largely overlap (78%), suggesting that general forces shape endemism patterns across taxa. This raises confidence that conservation of areas important for small-ranged vertebrates will benefit invertebrates while providing a "treasure map" to guide future discovery.


Subject(s)
Ants , Animals , Ants/physiology , Biodiversity , Ecosystem , Invertebrates , Phylogeny , Vertebrates
18.
Sci Total Environ ; 850: 157853, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35940273

ABSTRACT

The prevalence of inflammatory diseases is increasing in populations throughout the industrialized world. An increasing proportion of human populations grow up and live in urban areas, probably with reduced exposure to biodiversity, including diverse soil biotas. Decreased exposure to microorganisms from natural environments, in particular in early childhood, has been hypothesized to hamper development of the human immune system and lead to increasing risks of inflammatory diseases, such as asthma. We investigated 40,249 Danish individuals born 1995-2015. Percentage greenspace was assessed in a 2 km buffer around home addresses of individuals. The Danish Biodiversity Map, charting occurrence density of red-listed animals, plants and macrofungi, was used as a proxy for multi-taxon biodiversity. For asthma defined broadly, we found no evidence of decreasing risk of developing asthma with higher levels of biodiversity, while greenspace exposure was associated with higher risk of asthma. In contrast, exposure to total and biodiverse greenspace was associated with reduced risk of developing severe asthma. Exposure to farmland, which in Denmark is heavily industrialized cropland, also showed association with elevated risk of developing asthma, even at relatively low agricultural landcover. In the subset of children growing up in highly urbanized settings, we found high exposures to urban greenspace to be associated with reduced risk of developing asthma. Our results lend limited support to the hypothesis that childhood exposure to biodiverse environments reduces the risk of acquiring inflammatory diseases later in life. However, access to urban greenspace, such as parks, which typically harbour low levels of biodiversity, seems to reduce asthma risk, potentially through exposure to common soil microbiota. Our results suggest that effects of biodiversity exposure on human health is set by a balance between ecosystem services and disservices and that biodiversity conservation is best motivated with other arguments than reduction of risks from inflammatory diseases.


Subject(s)
Asthma , Microbiota , Animals , Asthma/chemically induced , Asthma/epidemiology , Biodiversity , Child , Child, Preschool , Humans , Parks, Recreational , Soil
19.
Mol Ecol ; 31(18): 4884-4899, 2022 09.
Article in English | MEDLINE | ID: mdl-35866574

ABSTRACT

As species arise, evolve and diverge, they are shaped by forces that unfold across short and long timescales and at both local and vast geographical scales. It is rare, however, to be able document this history across broad sweeps of time and space in a single species. Here, we report the results of a continental-scale phylogenomic analysis across the entire range of a widespread species. We analysed sequences of 1402 orthologous ultraconserved element (UCE) loci from 75 individuals to identify population genetic structure and historical demographic patterns across the continent-wide range of a cold-adapted ant, the winter ant, Prenolepis imparis. We recovered five well-supported, genetically isolated clades representing lineages that diverged from 8.2-2.2 million years ago. These include: (i) an early diverging lineage located in Florida, (ii) a lineage that spans the southern United States, (iii) populations that extend across the midwestern and northeastern United States, (iv) populations from the western United States and (v) populations in southwestern Arizona and Mexico. Population genetic analyses revealed little or no gene flow among these lineages, but patterns consistent with more recent gene flow among populations within lineages, and localized structure with migration in the western United States. High support for five major geographical lineages and lack of evidence of contemporary gene flow indicate in situ diversification across the species' range, producing relatively ancient lineages that persisted through subsequent climate change and glaciation during the Quaternary.


Subject(s)
Ants , Animals , Ants/genetics , DNA, Mitochondrial/genetics , Gene Flow , Genetic Variation/genetics , Genetics, Population , Humans , Phylogeny , Phylogeography
20.
Oecologia ; 199(4): 859-869, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35907124

ABSTRACT

Prey state and prey density mediate antipredator responses that can shift community structure and alter ecosystem processes. For example, well-nourished prey at low densities (i.e., prey with higher per capita predation risk) should respond strongly to predators. Although prey state and density often co-vary across habitats, it is unclear if prey responses to predator cues are habitat-specific. We used mesocosms to compare the habitat-specific responses of purple sea urchins (Strongylocentrotus purpuratus) to waterborne cues from predatory lobsters (Panulirus interruptus). We predicted that urchins from kelp forests (i.e., in well-nourished condition) tested at low densities typically observed in this habitat would respond more strongly to predation risk than barren urchins (i.e., in less nourished condition) tested at high densities typically observed in this habitat. Indeed, when tested at densities associated with respective habitats, urchins from forests, but not barrens, reduced kelp grazing by 69% when exposed to lobster risk cues. Barren urchins that were unresponsive to predator cues at natural, high densities suddenly responded strongly to lobster cues when conspecific densities were reduced. Strong responses of low densities of barren urchins persisted across feeding history (i.e. 0-64 days of starvation). This suggests that barren urchins can respond to predators but typically do not because of high conspecific densities. Because high densities of urchins in barrens should weaken the non-consumptive effects of lobsters, urchins in these habitats may continue to graze in the presence of predators thereby providing a feedback that maintains urchin barrens.


Subject(s)
Kelp , Predatory Behavior , Animals , Cues , Ecosystem , Food Chain , Sea Urchins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...